Majoranapp
A C++ library for studying MZM in non-interacting systems
Spinfull Namespace Reference

Classes

class  ChemicalTerm
 chemical potential term

\[ \hat H_{\mu} = \sum_{i\sigma}\mu_{i} \hat n_{i\sigma} = -i\sum_{i\sigma} \frac{\mu_{i}}{2} \gamma_{i\sigma}^+ \gamma_{i\sigma}^- \]

More...
 
class  KineticTerm
 kinetic term

\[ \hat H_{\mathrm{kin}} = \sum_{\langle i,j\rangle} \sum_\sigma\left(t_{ij} c_{i\sigma}^\dagger c_{j\sigma}+\mathrm{h.c.}\right) = -i\sum_{\langle i,j\rangle} \sum_\sigma\frac{t_{ij}}{2}\left( \gamma_{i\sigma}^+ \gamma_{j\sigma}^- + \gamma_{j\sigma}^+ \gamma_{i\sigma}^- \right) \]

More...
 
class  ProxTerm
 proximity term

\[ \hat H_{\mathrm{prox}} = \sum_{i}\Delta_{i}\left( c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger +\mathrm{h.c.}\right)= i\sum_{i} \frac{\Delta_{i}}{2}\left( +\gamma_{i\uparrow}^+\gamma_{i\downarrow}^- -\gamma_{i\downarrow}^+ \gamma_{i\uparrow}^- \right) \]

More...
 
class  RashbaXTerm
 Rashba X term

\[ \hat H_{\mathrm{Rashba}\, x} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^x c_{i\sigma}^\dagger (i\sigma^x)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle} i\alpha_{ij}^x \left( c_{i\uparrow}^\dagger c_{j\downarrow} +c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^x}{2}\left( \gamma_{i\uparrow}^+ \gamma_{j\downarrow}^+ +\gamma_{j\downarrow}^- \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^+ +\gamma_{j\uparrow}^- \gamma_{i\downarrow}^- \right) \]

. More...

 
class  RashbaYTerm
 Rashba Y term

\[ \hat H_{\mathrm{Rashba}\, y} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^y c_{i\sigma}^\dagger (i\sigma^y)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle}\alpha_{ij}^y\left( c_{i\uparrow}^\dagger c_{j\downarrow} -c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^y}{2}\left( -\gamma_{i\uparrow}^+ \gamma_{j\downarrow}^- -\gamma_{j\downarrow}^+ \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^- +\gamma_{j\uparrow}^+ \gamma_{i\downarrow}^- \right) \]

. More...

 
class  RashbaZTerm
 Rashba Z term

\[ \hat H_{\mathrm{Rashba}\, z} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^z c_{i\sigma}^\dagger (i\sigma^z)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle}\alpha_{ij}^z\left( i c_{i\uparrow}^\dagger c_{j\uparrow} -i c_{i\downarrow}^\dagger c_{j\downarrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^z}{2}\left( \gamma_{i\uparrow}^+ \gamma_{j\uparrow}^+ +\gamma_{i\uparrow}^- \gamma_{j\uparrow}^- -\gamma_{i\downarrow}^+ \gamma_{j\downarrow}^+ -\gamma_{j\downarrow}^- \gamma_{i\downarrow}^- \right) \]

. More...

 
class  ZeemanXTerm
 Zeeman in X (spin flip) term

\[ \hat H_{\mathrm{Zeeman}\, x} = \sum_{i} \sum_{\sigma\sigma'} V_{i}^X c_{i\sigma}^\dagger (\sigma^x)_{\sigma\sigma'} c_{i\sigma'} = \sum_{i}V_{i}^X\left( c_{i\uparrow}^\dagger c_{i\downarrow} +\mathrm{h.c.}\right)= -i\sum_{i} \frac{V_{i}^X}{2}\left( \gamma_{i\uparrow}^+\gamma_{i\downarrow}^- +\gamma_{i\downarrow}^+ \gamma_{i\uparrow}^- \right) \]

. More...

 
class  ZeemanYTerm
 Zeeman in Y term

\[ \hat H_{\mathrm{Zeeman}\, y} = \sum_{i} \sum_{\sigma\sigma'} V_{i}^Y c_{i\sigma}^\dagger (\sigma^y)_{\sigma\sigma'} c_{i\sigma'} = \sum_{i}V_{i}^Y\left( ic_{i\uparrow}^\dagger c_{i\downarrow} +\mathrm{h.c.}\right)= i\sum_{i} \frac{V_{i}^Y}{2}\left( \gamma_{i\uparrow}^+\gamma_{i\downarrow}^+ +\gamma_{i\uparrow}^- \gamma_{i\downarrow}^- \right) \]

. More...

 
class  ZeemanZTerm
 Zeeman Z term

\[ \hat H_{\mathrm{Zeeman}\, z} = \sum_{i} \sum_{\sigma\sigma'}V_{i}^Z c_{i\sigma}^\dagger (\sigma^z)_{\sigma\sigma'} c_{i\sigma'} = \sum_{i}V_{i}^Z\left( \hat n_{i\uparrow} - \hat n_{i\downarrow} \right) = i\sum_{i} \frac{V_{i}^Z}{2}\left( - \gamma_{i\uparrow}^+ \gamma_{i\uparrow}^- + \gamma_{i\downarrow}^+ \gamma_{i\downarrow}^- \right) \]

. More...