Rashba X term
\[ \hat H_{\mathrm{Rashba}\, x} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^x c_{i\sigma}^\dagger (i\sigma^x)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle} i\alpha_{ij}^x \left( c_{i\uparrow}^\dagger c_{j\downarrow} +c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^x}{2}\left( \gamma_{i\uparrow}^+ \gamma_{j\downarrow}^+ +\gamma_{j\downarrow}^- \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^+ +\gamma_{j\uparrow}^- \gamma_{i\downarrow}^- \right) \]
.
More...
#include <RashbaXTerm.hpp>
|
static const std::string | name {"rashbaX"} |
|
static constexpr size_t | locality {2} |
|
Rashba X term
\[ \hat H_{\mathrm{Rashba}\, x} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^x c_{i\sigma}^\dagger (i\sigma^x)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle} i\alpha_{ij}^x \left( c_{i\uparrow}^\dagger c_{j\downarrow} +c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^x}{2}\left( \gamma_{i\uparrow}^+ \gamma_{j\downarrow}^+ +\gamma_{j\downarrow}^- \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^+ +\gamma_{j\uparrow}^- \gamma_{i\downarrow}^- \right) \]
.
◆ Fill()
template<class T >
static void Spinfull::RashbaXTerm::Fill |
( |
Hamiltonian< T > & |
ham, |
|
|
double |
rashbaX, |
|
|
int |
i, |
|
|
int |
j |
|
) |
| |
|
inlinestatic |
Filler.
- Template Parameters
-
T | matrix type, support for: arma::mat, arma::sp_mat |
- Parameters
-
ham | hamiltonian container |
rashbaX | rashba interaction value \(\alpha_{ij}^x\) |
i | site index |
j | site index |
◆ locality
constexpr size_t Spinfull::RashbaXTerm::locality {2} |
|
static |
◆ name
const std::string Spinfull::RashbaXTerm::name {"rashbaX"} |
|
static |
The documentation for this class was generated from the following file: