Rashba Y term
\[ \hat H_{\mathrm{Rashba}\, y} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^y c_{i\sigma}^\dagger (i\sigma^y)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle}\alpha_{ij}^y\left( c_{i\uparrow}^\dagger c_{j\downarrow} -c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^y}{2}\left( -\gamma_{i\uparrow}^+ \gamma_{j\downarrow}^- -\gamma_{j\downarrow}^+ \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^- +\gamma_{j\uparrow}^+ \gamma_{i\downarrow}^- \right) \]
.
More...
#include <RashbaYTerm.hpp>
|
static const std::string | name {"rashbaY"} |
|
static constexpr size_t | locality {2} |
|
Rashba Y term
\[ \hat H_{\mathrm{Rashba}\, y} = \sum_{\langle i,j\rangle}\sum_{\sigma\sigma'} \alpha_{ij}^y c_{i\sigma}^\dagger (i\sigma^y)_{\sigma\sigma'} c_{j\sigma'} +\mathrm{h.c.}= \sum_{\langle i,j\rangle}\alpha_{ij}^y\left( c_{i\uparrow}^\dagger c_{j\downarrow} -c_{i\downarrow}^\dagger c_{j\uparrow}\right) +\mathrm{h.c.} = i\sum_{\langle i,j\rangle} \frac{\alpha_{ij}^y}{2}\left( -\gamma_{i\uparrow}^+ \gamma_{j\downarrow}^- -\gamma_{j\downarrow}^+ \gamma_{i\uparrow}^- +\gamma_{i\downarrow}^+ \gamma_{j\uparrow}^- +\gamma_{j\uparrow}^+ \gamma_{i\downarrow}^- \right) \]
.
◆ Fill()
template<class T >
static void Spinfull::RashbaYTerm::Fill |
( |
Hamiltonian< T > & |
ham, |
|
|
double |
rashbaY, |
|
|
int |
i, |
|
|
int |
j |
|
) |
| |
|
inlinestatic |
Filler.
- Template Parameters
-
T | matrix type, support for: arma::mat, arma::sp_mat |
- Parameters
-
ham | hamiltonian container |
rashbaY | rashba interaction value \(\alpha_{ij}^y\) |
i | site index |
j | site index |
◆ locality
constexpr size_t Spinfull::RashbaYTerm::locality {2} |
|
static |
◆ name
const std::string Spinfull::RashbaYTerm::name {"rashbaY"} |
|
static |
The documentation for this class was generated from the following file: