
Uniwersytet Śląski w Katowicach
Instytut Fizyki

Zakład Fizyki Teoretycznej

Andrzej Więckowski
Nr albumu: 292715

Dynamics of disordered
quantum annealers

Praca magisterska

Promotor:
prof. zw. dr hab. Marcin Mierzejewski

Katowice 2018




overlay
 



Słowa kluczowe:
adiabatic quantum computing, quantum annealing, graph coloring,
Ising model, D-Wave

Oświadczenie autora pracy

Ja, niżej podpisany Andrzej Więckowski, autor pracy dyplomowej pt. Dy-
namics of disordered quantum annealers, o numerze albumu: 292715, student
Wydziału Matematyki, Fizyki i Chemii Uniwersytetu Śląskiego w Katowicach,
kierunku studiów Fizyka, specjalności theoretical physics oświadczam, że ww.
praca dyplomowa:

• została przygotowana przeze mnie samodzielnie1,

• nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 r.
o prawie autorskim i prawach pokrewnych (tekst jednolity Dz. U. z 2006 r.
Nr 90, poz. 631, z późn. zm.) oraz dóbr osobistych chronionych prawem
cywilnym,

• nie zawiera danych i informacji, które uzyskałem w sposób niedozwolony,

• nie była podstawą nadania dyplomu uczelni wyższej lub tytułu zawodowego
ani mnie, ani innej osobie.

Oświadczam również, że treść pracy dyplomowej zamieszczonej przeze mnie
w Archiwum Prac Dyplomowych jest identyczna z treścią zawartą w wydrukowanej
wersji pracy.

Jestem świadomy odpowiedzialności karnej za złożenie fałszywego
oświadczenia.

................................ ................................
(miejsce i data) (podpis autora pracy)

1uwzględniając merytoryczny wkład promotora (w ramach prowadzonego seminarium
dyplomowego)

i

3:5971353870



ii

4:1081731561



To my parents Monika and Marek, beloved Karolina
and everyone, who supported me during my education.

Thanks to Marcin Mierzejewski for being the best men-
tor and for guiding me on the right path.

iii

5:1149031688



iv

6:8777338390



Abstract

Quantum computers can be a big step for further advancement of
our technology. The main focus of this work was to study disordered
quantum annealing as an example method related to quantum comput-
ing. The first chapter introduces theoretical background of the thesis.
The second one presents tests of numerics and comparison to Landau-
Zener formula – a simple model of transitions in two level system. The
last chapter, the most important one, presents an application of quan-
tum annealing to specific combinatorial problem – graph coloring. We
found out that a specific disorder can provide better results in quantum
annealing than standard homogeneous system setting. Potentially, this
method can be applied to D-Wave’s quantum annealer to solve some
problems more efficiently.

Streszczenie

Badania nad komputerami kwantowymi mogą stanowić duży postęp
w dalszym rozwoju naszej technologii. Głównym celem tej pracy było
badanie wyżarzania kwantowego z nieporządkiem, metodą związaną z
obliczeniami kwantowymi. Pierwszy rozdział wprowadza czytelnika do
podstaw teoretycznych związanych z tematem pracy. Drugi przedstawia
testy numeryki i porównanie do formuły Landaua-Zenera – prosty mo-
del dwupoziomowego układu. Ostatni, najważniejszy, przedstawia za-
stosowanie wyżarzania kwantowego do wybranego problemu kombina-
torycznego – kolorowania grafu. Pokazaliśmy, że odpowiedni nieporzą-
dek układu może zagwarantować lepszą wydajność wyżarzania kwanto-
wego niż standardowe ustawienia. Potencjalnie ta metoda może zostać
wykorzystana w kwantowym wyżarzaczu D-Wave do efektywniejszego
rozwiązywania wybranych problemów.

v

7:1783668306



Contents

Introduction 1

1 Adiabatic quantum computing 4
1.1 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 D-Wave hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Adiabatic theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Quantum annealing . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Ising model with transverse field 16
2.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Test of implementation . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Testing energy level spectrum . . . . . . . . . . . . . . . 19
2.3.2 Testing adiabaticity . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Comparison to Landau-Zener formula . . . . . . . . . . . 22

3 Graph coloring in Ising model 24
3.1 Selected topics of graph theory . . . . . . . . . . . . . . . . . . 24

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Graph coloring . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Mapping to Ising model . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 QUBO formula . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Graph coloring in QUBO formula . . . . . . . . . . . . . 29

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Studied topologies . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Detailed study of selected topologies . . . . . . . . . . . 37

Conclusions 43

vi

8:9618967909



A Numerical methods 44
A.1 Lanczos method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Chebyshev propagation . . . . . . . . . . . . . . . . . . . . . . . 45
A.3 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Landau-Zener transition 48
B.1 Landau-Zener derivation . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C Experiments on DW-2000Q 53

List of Figures 55

Glossary 57

Bibliography 58

vii

9:1004784325



viii

10:3653304688



Introduction

Computers are probably the most important inventions in the history of
mankind. They can be found in every aspects of our life. They can help us,
support us or even they can save our lives. However, we are still trying to im-
prove the performance of computers to do better and faster calculations with
lower energy consumption.

In the last century, from about 60’s until now, approximately every 2 years,
total number of transistors in CPU has doubled. This statement is formula-
tion of the famous Moore’s law [1]. Nowadays, current advancement has slowly
been decelerating and some people start to believe that in the about ∼2020
Moore’s law will not work anymore [2]. Greater miniaturization of integrated
circuits slowly reaches the limit of quantum scales. Reaching this limit may
cause some problems for future improvements of such technology. Our classi-
cal computation mostly depends on Boolean algebra with standard logic. In
classical computers we wish to get rid of any quantum nature effects, to work
on well defined classical bits: 0 and 1. Is it possible to construct such machine,
which will benefit from quantum phenomena? If so, what are the advantages
of quantum over classical computation. That is the questions which quantum
computing is trying to find an answer for.

It is highly probable that we owe the early development (i.e. main idea) of
quantum computing to these three scientists and their corresponding works:
Paul Benioff [3], Yuri Manin [4] and Richard Feynman [5]. Then, some progress
has been achieved. People developed algorithms for some problems, which had
better performance than any other algorithm which could be performed on
classical computers. Deterministic2 Deutsch-Jozsa algorithm[6] allows to check
if such binary function f : {0, 1}n → {0, 1} is constant or balanced with only
one evaluation. In classical algorithm, in worst case, 2n−1 + 1 evaluations are
needed. Probabilistic Grover algorithm[7] lets us search n-element database
in O(

√
n) steps, unlike classical algorithm O(n). Finally Shor’s algorithm[8],

probably most popular and most prominent algorithm, finds prime factors
for given number in polynomial time (using quantum computer). On classical

2 Most of quantum algorithms are probabilistic. A successful final results is obtained
with huge probability. Deterministic ones mean that one has 100% probability of success
(on reliable machine).

1
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Introduction

machine no one has ever found algorithm which works in polynomial time.
The best known algorithm works in sub-exponential time. These algorithms
made scientific community interested in the further development of the field.
Especially the lastest algorithm which has been mentioned. Properly working
quantum computer with efficient number of qubits should be able to crack
current security cryptosystems which are in use today.

NP

NP-hard

NPC

P
co

m
pl

ex
it

y
Figure 1: Hypothetical complexity rela-
tions between: P, NP, NPC, NP-hard
classes.

Considering computational com-
plexity classes, quantum computers
are perceived by many people as hope
for finding an algorithm which can
more effectively than any classical
one solve some significantly difficult
tasks. In Figure 1 a scheme of hypo-
thetical3 relationship between some
important complexity classes of de-
cision problems is presented. Deci-
sion problem is the one, which can be
answered either by yes or no. Class
P stands for polynomial time class,
which means that this kind of prob-
lems can be solved efficiently in poly-
nomial time on the deterministic machine. Class NP corresponds to nonde-
terministic polynomial time class, which includes problems for which solution
can efficiently be validated in polynomial time. Class NP-hard includes hard
problems. If all problems A ∈ NP can be reduced in polynomial time to
problem B, then problem B belongs to NP-hard. NP-hard can also include
non-decision problems (e.g. function problems or optimization problems), for
which there exist related decision problem. Class NPC stands for nondeter-
ministic polynomial complete class and it is an intersection between NP and
NP-hard. NPC includes the hardest problems from NP. Quantum computers
could solve efficiently problems in BQP class[9] (with at least 2/3 probability).
Acronym BQP represents bounded error quantum polynomial time. Relations
between BQP and other listed classes still remain unknown. For example inte-
ger factorization problem is suspected to be outside P and should be in BQP,
due to Shor’s algorithm. However, we still do not now if an algorithm of inte-
ger factorization which works in polynomial time exists on classical machines.
We do not know if problems efficiently solved by quantum machine can be
also solvable efficiently on classical one, but nevertheless the algorithms listed
above seem to be promising for quantum computing development.

3 It is not certain ifP6=NP orP=NP. Probably most of the scientist believe thatP 6=NP.
This is one of the millennium problems.

2
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Introduction

What about physical realization? In the past few years, real race has be-
gun. The adventure with actual experimental quantum computer began in
1998, when the first realization of Grover’s algorithm was performed on 2 qubit
system[10]. It was the beginning of the major progress. There are still some big
challenges for the constructors. One of the biggest problems in the construction
of such machines is quantum decoherence. After 20 years from the construction
of the first 2-qubit system, technology has made some progress, but it is the
beginning of even a greater story. The current status of the progress is the fol-
lowing: IBM company has 16-qubit universal quantum computer[11]; D-Wave
Systems, first commercial quantum computer company, has in its offer 2048-
qubit adiabatic quantum computers using quantum annealing[12]. The second
company, at the beginning encountered a few problems. Scientific community
did not believe that those machines are actual real quantum machines. Later
studies proved that there is indeed a quantum entanglement phenomena on D-
Wave’s machines[13]. These two companies present two different approaches
to quantum computing. Nowadays universal quantum computers have about
∼ 10 qubits, while adiabatic quantum computers ∼ 103 qubits and their total
number grows according to Moore’s law. Reaching the barrier of 106 qubits
should bring huge perspective. In this work I will try to study the theoretical
aspects of quantum computing such as D-Wave’s machines.

What’s inside?

The following thesis is divided into 3 chapters leading the reader from
theoretical aspects to applications. The information included is supported by
some derivations, formulas, pictures, schemes and some numerical results.

• In Chapter 1, a reader can find some basic definitions and topics re-
lated to adiabatic quantum computing: basic information about qubits,
entanglement, quantum annealing and adiabatic theorem.

• In Chapter 2 there are some details of mathematical model, which can
describe D-Wave machines. There are some tests of numerical methods
and comparison to a simple two level system.

• Chapter 3 presents the results of adiabatic quantum computer appli-
cation to solve graph coloring problems. It starts from mathematical
background for graph theory and then there are some implementations
of selected problems.

• In the appendixes the reader can find valuable materials regarding nu-
merical methods or derivation of the Landau-Zener formula.

3
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Chapter 1

Adiabatic quantum computing

1.1 Quantum computing

There are many models of quantum computing or even the classical ones
(selected models are listed in Fig. 1.1). In this thesis we will focus on a very spe-
cific model, i.e. adiabatic model[14, 15]. Adiabatic quantum computing (AQC)
model relies on the adiabatic theorem (see Section 1.5 for further details) and
the calculations are based on this theorem. Other most ’popular’ models are:
circuit and topological models. The first model, the most ’popular’, uses quan-
tum gates[9, 16] to perform calculations as an analogy to classical bits reg-
ister. The last one, probably the most subtle and prominent, uses braiding
of anyones[17]. Due to better stability of this particles for decoherence, these
kind of computation should be protected from small perturbations, which other
models of quantum computing are not secured from.

Computing

analog quantum

circuit adiabatic topological

digital

Figure 1.1: Selected classical and quantum computing models.

AQC is much different than others quantum computational models. Com-
putation does not run in a specific sequence of gates or operations. Here cal-
culations are based on initial/final Hamiltonian Ĥi/f(t) and a path from one
to the other. As a results calculations are performed only by defining topology
of the system described by Hamiltonian Ĥi/f(t), parameters of the Hamilto-
nian and their time dependence (see Section 1.6). However, this approach is
polynomially equivalent to circuit gate model[18].

4
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Chapter 1. Adiabatic quantum computing 1.2. Qubits

1.2 Qubits

Computers are usually defined as machines, which should be able to store,
process and save information. Most of modern computers are based on binary
system1, in which we store informations using bits – the smallest amount of
information. Bit can be represented by two distinguishable states 0, 1. The
smallest amount of quantum information is a qubit. In a contrast to classi-
cal bits, qubits can be in any superposition of two quantum states: |0〉, |1〉
(Dirac bra-ket notation). These two vectors made up the base of two dimen-
sional Hilbert space H(C2). In this space H, any qubit can be represented by
normalized vector |ψ〉:

|ψ〉 = α|0〉+ β|1〉, (1.1)

y

z

x

|ψ〉
θ

ϕ

|0〉

|1〉

Figure 1.2: Bloch sphere: representation of the qubit.

where normalization condition holds: |α|2 + |β|2 = 1 and α, β are complex
parameters. Interpretation of parameters α, β is the following: when we do the
measurement, |α|2, |β|2 are the probabilities of outcome |0〉, |1〉 respectively.
Since α, β ∈ C one should expect that |ψ〉 can be described by 4 independent
parameters. However |ψ〉 has only 2 degrees of freedom (not 4). One degree is
absorbed by normalization condition and the other is neglected, because we
have a free choice of phase eiω. If one chooses α = eiω cos θ

2 , then (it can be
easily shown that) β = eiωeiϕ sin θ

2 , where ω, θ, ϕ ∈ R. We end up with the
following representation (we set ω = 0):

|ψ〉 = cos( θ2)|0〉+ eiϕ sin( θ2)|1〉, (1.2)

where θ, ϕ satisfy 0 ¬ θ ¬ π and 0 ¬ ϕ ¬ 2π. Any state from H can be
described by this formula. The full range of parameters θ, ϕ defines famous

1Nowadays almost all of them are binary. However, in the early days of computing, in
Soviet Union there were some computers using the balanced ternary numeral system (three-
valued logic system) e.g. Setun [19].

5
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1.3. Entanglement Chapter 1. Adiabatic quantum computing

Bloch sphere[9] (see Fig. 1.2).

In the real physical systems, qubits can be realized in many different ways.
In Table 1.1 some selected realizations are presented. The reader can find infor-
mation about various solutions using different particles and physical phenom-
ena. There are many ideas, but still new ideas emerge. Most of the realizations
are based on a two level system or a system in which we try to separate ground
states and first excited states from the rest of the energy spectrum. A key role
here is the temperature. Low temperature guarantees that the system should
stay at the ground state and the first excited states as well as it ensures its
protection from thermal noise.

Physical
phenomena

Model Information
support

|0〉
|1〉

photon
polarization encoding polarization horizontal

vertical

number of photons N
vacuum

1 particle

electrons
electronic spin spin up

down

number of electrons N
vacuum

1 particle

Josephson junction

superconducting charge island charge uncharged
charged

superconducting flux current clockwise
counterclockwise

superconducting phase energy state ground state
first excited state

Singly charged
quantum dot pair

electron localization charge
(particle position)

left dot
right dot

Table 1.1: Selected qubit implementations (source: wikipedia:Qubit). In D-
Wave qubits were implemented with the method marked with a red contour.

D-Wave System’s computers operate using Josephson junctions (see Section
1.4 for details). This method is marked in Table 1.1 by red dashed contour.

1.3 Entanglement

Except superposition of qubits, another very important phenomenon, which
is missing in classical physics, can occur in quantum computer. It is called
entanglement. Entanglement of particles can be defined as a state, in which
particles can not be described independently anymore. From mathematical

6
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Chapter 1. Adiabatic quantum computing 1.4. D-Wave hardware

perspective subsystems A and B are not entangled if they can be described by
the following wave-function2:

|Φ〉 = |ψ〉A ⊗ |φ〉B ∈ HA ⊗HB. (1.3)

The measurement of physical quantities (eg. spin projection, photon polariza-
tion) of entangled objects has correlation which is absent in classical physics.
For example, let us consider the following state 1√

2
(|00〉+ |11〉). In actual sit-

uation, 0,1 can be assigned to measured spin in z-axis in 2 entangled electrons.
If we measure 0 on the first particle then we can be sure that if we measure
the second particle (on the same basis) it will also be in state 0. Entanglement
can be realized on very large distances and does not involve any retardation. It
might seem that this phenomenon should lead to propagation of information
at ∞ speed, but this is a paradox. In such experiment there is no validation
of propagation limit at the speed of light c, because before the measurement
we do not know in which state there are the particles, so no information prop-
agation is done at all.

This strange non-local behavior was tested in experiments in the past
few years by entanglement of different elementary particles (e.g. electrons[20],
photons[21]) or even bigger objects like atoms[22] and molecules[23]. Most of
these experiments are based on validation of the Bell inequalities. Entangle-
ment has a very important role in quantum computing. Utilizing this phe-
nomenon one can formulate fast working quantum algorithm, which overheads
exponentially classical algorithms[9].

1.4 D-Wave hardware

Now we will focus on the example of quantum computers from real life,
i.e. AQC or more precisely, the ones which rely on quantum annealing proto-
col. Within the past few years D-Wave System constructed several computers.
Each new generation was better than the previous ones[12, 24, 25]. The first fi-
nal product (not prototype) was a 128-qubit system. The newest computer has
2048 qubits. The company products can be described as analogous to Moore’s
law (Fig. 1.4). This is good news for us, because in a few years better perfor-
mance in AQC will probably be achieved.

The newest machine, D-Wave 2000Q[12], is highly shielded from external
magnetic field, and its quantum processing unit (QPU analogous CPU), the
size of the thumb, is cooled down to extremely low temperature ∼ 15 [mK].

2 Definition can be expanded into mixed states (pi < 1) using density matrices framework
ρ̂ =

∑
i pi|ψi〉〈ψi|, where pi is a probability that system is in state |ψi〉〈ψi|. State ρ̂ is

entangled, if it cannot be represented in the following form:
∑
i piρ̂

A
i ⊗ ρ̂Bi and ρ̂Ai ∈ HA,

ρ̂Bi ∈ HB .

7
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1.4. D-Wave hardware Chapter 1. Adiabatic quantum computing

(a) qubits in red
(b) Quantum Processing Unit

(QPU)

Figure 1.3: Inside D-Wave’s ’fridge’ (Image source: [12]).

This low temperature guarantees that in D-Wave environment, some quantum
effects, which are required for quantum computing, should appear while de-
coherence is suppressed. The whole construction has the following dimensions
(approximately): length 3 [m], width 2 [m] and height 3[m].

Φ1 Φ2

|0〉

|1〉
|1〉

|0〉 h

U

V

Φ1

Figure 1.5: Simplified flux qubit scheme with
corresponding modeled potential V (Φ1). Col-
ored arrows in diagram represent correspond-
ing current flow direction. Cross symbol ’X’ in
the circuit means a Josephson junction.

As it was mentioned in
Section 1.2, D-Wave qubits
are based on Josephson junc-
tions and they use super-
conducting flux and direction
of the current. Single qubit,
based on niobium[12], which
is a superconductor below
temperature 9.2[K], is built
by two superconducting loops
[26] (see Fig 1.5). Such a sys-
tem can be modelled by two-
well potential in which poten-
tial U barrier is proportional
to flux Φ2, and potential ex-
trema heights difference h is related to flux Φ1. In that system there can be
current flows clockwise – this state can be assigned to |0〉, counterclockwise –
this can be assigned to |1〉 or in both directions – this can be assigned to a
superposition |ψ〉 = α|0〉+ β|1〉.

8
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Chapter 1. Adiabatic quantum computing 1.5. Adiabatic theorem
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May 2011

May 2013

August 2015

January 2017

D-Wave One

D-Wave Two

D-Wave 2X

D-Wave 2000Q

qubits
couplers

Figure 1.4: D-Wave’s analogue of the Moore law.

. . . . . .

...

...

Figure 1.6: Chimera graph topology realized on
D-Wave machines.

Qubits in D-Wave ma-
chines are connected via
chimera topology. A part
of complicated connections
(couplers) structure is pre-
sented in Figure 1.6. The grid
for D-Wave 2000Q contains
256 units (colored with blue),
each containing 8 qubits,
which can be divided into
two groups of 4 qubits: verti-
cal and horizontal ones. Each
unit of qubits forms bigraph.
Each qubit from one group is
connected to all qubits from the other group and it is not connected to any
qubit from its group. Units are connected in such a way that vertical/horizontal
qubits are connected with neighboring vertical/horizontal qubits (colored with
red). Since our system is a finite system, some of the units have only 2 or 3
neighbors (not 4). These units are certainly located on the grid edge (color
gray). Since not all connections between qubits are available, one should prop-
erly embed studying case into such topology, if our qubits resource is sufficient.

1.5 Adiabatic theorem

AQC relies on very important theorem: adiabatic theorem. This theorem
holds that if a system is in n-eigenstate (especially ground state) of initial
Hamiltonian Ĥi and then a system is evolved adiabatically in time (slowly

9
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1.5. Adiabatic theorem Chapter 1. Adiabatic quantum computing

enough) to final Hamiltonian Ĥf, then the system will remain in n-eigenstate3.
The first proof of this theorem was given by Fock and Born[27] in 1928. The
following section will be devoted to proving this theorem (derivation is based
on a book [28]).

In general, evolution of the quantum state |ψ〉 ∈ H of the system, which
can be described with Hamiltonian Ĥ, is given by equation of motion – time-
dependent Schrödinger equation (TDSE) [28]:

i~|ψ̇〉 = Ĥ|ψ〉, (1.4)

where the dot means a derivative with respect to time t, ~ is Planck constant.
To make it more convenient, all other formulas, calculation or numerics in this
thesis are done with units ~ = 1. In the case of time independent Hamiltonians,
Equation (1.4) may be solved by finding eigenstates of Ĥ [time-independent
Schrödinger equation (TISE)]:

Ĥ|n〉 = En|n〉, (1.5)

where |n〉 are stationary solutions to Schrödinger equation and they obey
orthonormal relations 〈m|n〉 = δnm, so they can be used as a base of the
Hilbert space |ψ〉 =

∑
n cn|n〉. Putting Eq. (1.5) into Eq. (1.4) with condition

|ψ〉 = |n〉 one can obtain that for time independent Hamiltonian the solution
of Schrödinger equation is as follows:

|n(t)〉 = |n(0)〉 exp


−i

t∫

0

dt′En


 = |n(0)〉 exp (−iEnt) . (1.6)

During the evolution, |n〉 only picks up a phase factor, which can be eliminated
by some gauge transformation and it is irrelevant during measurement.

However, eigenproblem can be solved for time-dependent Hamiltonian:

Ĥ(t)|n(t)〉 = En(t)|n(t)〉 (1.7)

and even now eigenstates obey orthogonal relations: 〈m(t)|n(t)〉 = δnm. One
can write general solution |ψ〉 for Equation (1.4) using eigenstates |n(t)〉:

|ψ(t)〉 =
∑

n

cn(t)|n(t)〉eiθn(t), (1.8)

where θn is a dynamical phase:

θn(t) = −
t∫

0

dt′En(t′). (1.9)

3 Assuming discrete, non-degenerate spectrum through all evolution from Ĥi to Ĥf.

10
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Chapter 1. Adiabatic quantum computing 1.5. Adiabatic theorem

Introducing dynamical phase is only a convention. Such phase could be inserted
into definition: cn → cne

iθn . Choice of θn is motivated by solution for time
independent Hamiltonian like in Equation (1.6). The next step is to put |ψ〉
into Schrödinger equation:





i|ψ̇〉 = Ĥ|ψ〉;

i|ψ̇〉 = i
∑

n

(
ċn|n〉+ cn|ṅ〉+ cn|n〉iθ̇n

)
eiθn ;

Ĥ|ψ〉 =
∑

n

cnĤ|n〉eiθn =
∑

n

cnEn|n〉eiθn .

After some algebraic calculations one can end up with the following equation:

i
∑

n

(
ċn|n〉+ cn|ṅ〉

)
eiθn = 0. (1.10)

Next, Equation (1.10) is multiplied from the left hand side by 〈m|e−iθm :

∑

n

(
ċn〈m|n〉+ cn〈m|ṅ〉

)
ei(θn−θm) = 0;

∑

n

(
ċnδmn + cn〈m|ṅ〉

)
ei(θn−θm) = 0;

ċm = −
∑

n

cn〈m|ṅ〉ei(θn−θm). (1.11)

Now the only missing element is 〈m|ṅ〉. It can be obtained from differentiating
Equation (1.7):

˙̂
H|n〉+ Ĥ|ṅ〉 = Ėn|n〉+ En|ṅ〉.

After that, the equation is multiplied from the left hand side by arbitrary
eigenstate 〈m|:

〈m| ˙̂
H|n〉+ 〈m|Ĥ|ṅ〉 = Ėn〈m|n〉+ En〈m|ṅ〉;

〈m| ˙̂
H|n〉+ Em〈m|ṅ〉 = Ėnδmn + En〈m|ṅ〉;

〈m|ṅ〉 =
〈m| ˙̂

H|n〉 − Ėnδmn
En − Em

.

The last step is to put 〈m|ṅ〉 into Equation (1.11) and factor out from sum-
mation the element where n = m:

ċm = −cm〈m|ṁ〉 −
∑

n6=m
cn
〈m| ˙̂

H|n〉
En − Em

ei(θm−θn).

11
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1.6. Quantum annealing Chapter 1. Adiabatic quantum computing

In the adiabatic regime one can approximate ˙̂
H ≈ 0 and the last term will

drop out:

ċm ≈ −cm〈m|ṁ〉. (1.12)

As a result, a first order differential equation is achieved and the next step is
to separate the variables and integrate it:

t∫

0

dt′ ċm
cm

= −
t∫

0

dt′ 〈m|ṁ〉;

cm(t) = cm(0) exp


−

t∫

0

dt′ 〈m|ṁ〉

 . (1.13)

Now the geometric phase γm(t) will be introduced:

γm = i

t∫

0

dt′ 〈m|ṁ〉;

cm = cm(0)eiγm .

The value of 〈m|ṁ〉 is purely imaginary. From orthogonality relation of eigen-
vectors 〈m|n〉 = δnm one gets:

〈m|m〉 = 1;

〈ṁ|m〉+ 〈m|ṁ〉 = 0;

(〈m|ṁ〉)∗ + 〈m|ṁ〉 = 0→ <(〈m|ṁ〉) = 0.

Finally, the solution of Schrödinger equation is obtained in adiabatic approxi-
mation [Eq. (1.12)]. After the evolution state |ψ〉 only picks up some phases:

|ψ(t)〉 =
∑

n

cn(0)|n(t)〉eiθn(t)eiγn(t). (1.14)

1.6 Quantum annealing

In the literature one can notice that terminologies: AQC and Quantum
annealing (QA) are used interchangeably. Nevertheless, one should be careful
and distinguish these concepts, because they are slightly different. However,
using AQC and QA alternately should not lead to misunderstandings.

AQC is a computational model [14, 15], which is able to solve any problem
which universal quantum computer (gate model) should be able to solve (with
maximally some polynomial time penalty)[18]. The main idea of AQC is based

12
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En

t

1
2

3

4

Figure 1.7: Energy spectrum En in a function of time t for arbitrary Hamilto-
nian.

on the adiabatic theorem. First, initial state is started from easy initial Hamil-
tonian Ĥi ground state. Then the system is evolved on some path associated
with function f(τ) ∈ [0, 1], f(−1) = 1, f(1) = 0, τ ∈ [−1, 1], into ground
state, due to adiabatic theorem, of a final, desired Hamiltonian Ĥf, which is
constructed in such a way that it should produce the correct answer included
in a ground state for a specific problem. It is worth mentioning that, since adi-
abatic theorem holds not only for a ground state, but for the all eigenstates of
Hamiltonian, one should be able also to carry out the computing with excited
states. However, probably this solution will be harder to establish, because
of difficulties in designing such Hamiltonian and manipulation with adiabatic
evolution. Time dependent Hamiltonian of system Ĥ(τ = t/T ) can be written
in the following form:

Ĥ(τ) = f(τ)Ĥi + [1− f(τ)]Ĥf.

It can be shown that runtime T (total evolution time) of an algorithm in such
a language of AQC will produce correct answer with enough probability, which
should be rounded with[29]:

T = O
(

1
min(gap)2

)
,

where O is a big o notation and a min(gap) is minimal energy gap between
ground state energy and first excited state energy in Hamiltonian spectrum in
the hole range of time. When T is not large enough, then the adiabatic theo-
rem stops working and we get higher and higher probability that the system
will end in some excited state with not necessarily correct answer which we
hope to obtain from the final state. Here in Figure 1.7, we have a simplified
picture presenting some energy spectrum in a function of time for arbitrary
Hamiltonian:

1 initial state of Hamiltonian as a ground state;

13
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1.6. Quantum annealing Chapter 1. Adiabatic quantum computing

2 here at midpoint, where the gap is minimal, this point is the most
significant, the gap determines the probability that the system will remain in
its ground state;

3 success, the correct answer is obtained – if we are lucky or if the gap
was large enough to neglect probabilities of a transition to excited state;

4 we end up with an excited state – the gap was too small (or misfortune)
and the correct answer is not obtained.

quantum tunneling
global minimum

thermal fluctuations

some local minima

Figure 1.8: Schematic view on the dif-
ference between mechanism of SA and
QA.

QA is a heuristic method for
solving optimization combinatorial
problems[15]. Most of these tasks be-
longs to NP-hard complexity class.
Alternatively QA can be considered
as a physical (or simulated) realiza-
tions of some algorithms from AQC.
QA owes its name to simulated an-
nealing (SA). In some way it is a pre-
cursor of QA. Simulated annealing is
a technique for global optimization
of some function – e.g. finding mini-
mum. Inspiration of this method was
annealing (heat treatment) in metal-
lurgy. The principle of operation of
this technique is very similar to Monte Carlo methods or Metropolis algorithm.
The algorithm starts from a random state of the problem. Next, one tries to
alter the state slightly. Then, some quantity of current state is measured and
the decision if new modified state is accepted or not is made with some prob-
ability (depending on temperature). In the next steps of the algorithm, the
temperature is decreased to sufficiently low limit. With some probability at
each step there is a chance that the state will become worse than in the previ-
ous iteration. This is very important and purposeful because it prevents from
stacking in some local minima. It can be compared to thermal fluctuations,
which should be able to move the system in potential landscape in the direction
of global minima (Figure 1.8). In the contrast to thermal fluctuation in SA,
quantum fluctuations are used in QA. The algorithm starts from generating all
possible states of the system with equal probability. Then the system evolves
in time due to Schrödinger equation. During evolution transverse field4 is being
changed (parameter plays similar role as temperature in SA). This parameter
changes enable the system to tunnel in a potential landscape as a results of
changing the amplitudes of all possible states. If evolution is being performed
slowly enough, then correct answer will be obtained with large probability. In

4It will be explained in the next Chapter 2.

14
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Figure 1.8 the difference between physical phenomena behind SA and QA is
sketched. In the contrast to a general AQC, QA has some restrictions:

• initial state should be a superposition of all possible states in the system

with non-zero probability, e.g.: |ψ〉 = 1
2L

2L−1∑

i=0

|bin(i)〉 (L is number of

qubits);

• final Hamiltonian Ĥf, should be the classical one, as mostly solved prob-
lems are the combinatorial ones – for example Ising model for describing
spin glass.

15
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Chapter 2

Ising model with transverse field

In this chapter the first results will be presented, together with considering
a very simple model, i.e. Ising chain[30] with an additional term. First, the
studied model will be described and some details of the annealing procedure
will be explained. The purpose of this part of the thesis is to test the numerics
and demonstrate the physical phenomena related to (a)diabatic evolution.

2.1 Hamiltonian

D-Wave’s machines can be considered as a physical realization of the Ising
model[15, 26]. The model can be described as generalized Ising model with a
transverse field [31]as given by the Hamiltonian Ĥ:

Ĥ(τ) = −A(τ)
(

L∑

i=1

∆iσ
x
i

)
−B(τ)


∑

〈i,j〉
Jijσ

z
i σ

z
j +

L∑

i=1

hiσ
z
i


 , (2.1)

where σxi , σzi are Pauli spin operators, e.g. σzi = 2szi ; Jij is interaction between
2-components of spins on site i and j; hi is a value of an external magnetic
field (direction z) coupled to spin on site i; ∆i is a value of a transverse field
(direction x) and A(t), B(t) are linear time-dependent functions, whose be-
haviors are visualized on Figure (2.1). However, on actual D-Wave machines
A(τ), B(τ) are slightly different [32], but the approximation presented in Fig-
ure 2.1 is sufficient. As A(τ) is changed in time, at the end of evolution only the
second term of Hamiltonian, which is classical, remains. This is a requirement
on QA as it was mentioned in Section 1.6. At the beginning evolution starts
only with the first term of Hamiltonian (2.1). The initial state is a ground
state for Ĥ(−1), which may be obtained from Lanczos algorithm1 (see Ap-
pendix A.1 for details). Schrödinger Equation (1.4) is solved for appropriate
1 However, the state can be received analytically very easily in x and then transformed

into z basis, but for work convenience the system is described in z basis and it is replaced
with the general algorithm. This step does not affect the performance substantially and
allows one to study case with disordered ∆i as well.
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0

0.25

0.5

0.75

1

−1 −0.5 0 0.5 1

A(τ), B(τ)

τ = t/T

A(τ)

B(τ)

Figure 2.1: Behaviors of functions A(τ), B(τ).

time-dependent protocol for functions A(τ), B(τ). The evolution is obtained
by the expansion of propagator operator in a Chebyshev polynomial basis (see
Appendix A.2 for details) with sufficiently small time step δt = 0.01, even for
huge fields hi. At the end, the final state is achieved, in which one can measure
some observables as well as some quantities during evolution.

2.2 Test of implementation

(a) τ = −1

(b) −1 < τ < 1

(c) τ = 1

Figure 2.2: Sketch of evolution: (a) initial state – fully polarized state; (b)
state changes during evolution – superposition and tunneling of amplitudes
take place; (c) final state – ferromagnetic state with defects depending on
annealing time – marked with red dashed circles.

As a test, a simple uniform chain [described by Hamiltonian (2.1)] is stud-
ied, with L = 20, ∆i = 2, Jij = 1, hi = 0 and with open boundary condi-
tions (OBC). The topology of the chain is the following: 〈i, j〉 → 〈i, i + 1〉 for
i = 1, . . . , L−1. In this section B(τ) = B = 1 is fixed only temporarily, as was
done in [33]. In this paper [33], authors calculated kinks (defects) which emerge

17
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10−4

10−3

10−2

10−1

100

101

10−2 10−1 100

Nkinks

1/T

A. Więckowski

B. Gardas et. al

Figure 2.3: Code test – comparison between my results (red) and results from
the paper [33] (blue). Number of kinks Nkinks as a function of inverse time T
(system size L = 20, ∆i = 2, hi = 0, Jij = 1, B(τ) = B = 1, chain, OBC).
Note: double log scale.

after annealing. The ground state of Ĥ(−1) i.e. the initial state is in the form:
| →→ · · · →〉 – spins are fully polarized in x-direction. The ground state of
final Hamiltonian Ĥ(1) is degenerate: | ↑↑ . . . ↑〉 and | ↓↓ . . . ↓〉. Depending
on evolution time T , different number of kinks (defects) should appear in the
system. Kinks can be defined as a number of neighbouring spins with opposite
directions e.g. state | ↑↑↑↓↓〉 has 1 kink. The sketch of evolution procedure
is shown in Figure 2.2. Kinks can be calculated from final state by using the
following quantity:

Nkinks =
1
2

∑

〈i,j〉

(
1− 〈σzi σzj 〉

)
. (2.2)

To explain origin of this quantity, the following example will be considered:
| ↑↑↑↓↓ 〉 (it has 1 kink). The first, second and the last pair of spins have zero
contribution to the sum. Only the third pair gives the contribution equal 2,
so a proper counting factor 12 should be taken into account before summation.
The main purpose of defining such observable is to confront the results with
the published ones [33]. Results in [33] have been obtained for hi = 0, when
the system can be mapped on non-interacting fermions. In Figure 2.3 there
is the comparison of the results. As one can see the results are in the perfect
agreement, despite using different methods to obtain them.

18
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Chapter 2. Ising model with transverse field 2.3. Results

One should be aware that in general kinks in quantum computers defined
as in Equation (2.2) do not quantify excitations. For inhomogeneous systems,
spins do not need to be fully polarized. However, in the present case the ground
state is fully polarized and Equation (2.2) quantifies density of excitations.

2.3 Results

In this section, an extended model from the previous section will be stud-
ied, with non-zero external field hi 6= 0 and our model will be compared to
analytic results for just two level system: the Landau-Zener formula (LZF). It
is recommended to follow LZF derivation and numerical results from Appendix
B. All restrictions from previous section (like freezing the function B(t)) are
relaxed as well.

2.3.1 Testing energy level spectrum

−4
−2
0

2

4 (a)

−4
−2
0

2

4

-1 -0.5 0 0.5 1

(c)

(b)

-1 -0.5 0 0.5 1

(d)

E

E

τ τ

Figure 2.4: Energy spectrum for Hamiltonian (2.1) for different cases (selected
ones): (a) Jij = 1, hi = 0, (b) Jij = 1, hi = 0.5, (c) Jij = 1, hi = rand(1)
(d) Jij = 1 + rand(0.25), hi = rand(1), where rand(a) is a uniform random
distribution from −a to a. (chain with L = 4, OBC, ∆i = 1).

First, energy spectrum during the whole evolution for short chains (L = 4)
is studied [by solving TISE (1.5)]. Even in such a small system, there are 24 =
16 eigenstates, but energy spectrum is degenerate (for uniform, ideal chain)
has only up to 5 or 4 distinct eigenvalues. Initial/final system has significant
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2.3. Results Chapter 2. Ising model with transverse field

degeneracy in the whole spectrum. However, this degeneracy can be decreased
by adding constant field hi or fully destroyed by introducing some disorder
in Jij or hi. In Figure 2.4 an example of energy spectrum as a function of
time for different cases is presented. In Figure 2.4a a result for uniform chain
without any disorder and any field hi is posted. For this case, energy spectrum
is symmetric with respect to E = 0. The situation in Figure 2.4b is the most
favorable case for adiabatic evolution. Here the gap between ground state and
first excited state is the largest. However, still the final Hamiltonian has highly
degenerate energy spectrum (7 distinct eigenvalues). Only if one introduces
disorder in Jij and hi it will lift degeneracy of the final spectrum as shown in
Figures 2.4c-d. One may draw conclusion that uniform field hi should guarantee
stability of QA, but one should also remember that here a model of a very
simple problem is considered with trivial ground state like: | ↑↑ . . . ↑〉. In
general, our inputs are: topology of the lattice 〈i, j〉 and specific values of
parameters Jij, hi. Depending on these inputs, after QA one should be able to
obtain (any) ground state, e.g.: | ↑↑↓↑↓↓ . . . 〉.

2.3.2 Testing adiabaticity

As it was pointed out in Section 1.6, calculations are preformed according
to the adiabatic theorem. The crucial question is how slowly the evolution
should be performed to achieve the correct answer with large probability. In
Figure 2.5 a schematic look into this problem is presented. If evolution is per-
formed too fast then the system should end up (with huge probability) in an
excited state, probably returning wrong answer to the problem. Verification
of adiabacity condition can be tested, by calculating energy difference of the
final state: 〈Ĥ〉 and ground state energy of the final Hamiltonian: E0. Such a
test will be presented in the next two Figures: 2.6, 2.7.

Figure 2.6 illustrates how such energy difference changes during evolution
process. The energy E0 is the ground-state energy of Hamiltonian at time
t and it is calculated by Lanczos Algorithm (see Appendix A.1). Evolutions

En

t = −T t = T

slow

fast

∆E

Figure 2.5: Schematic dependence of evolution speed and energy excitation.
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Chapter 2. Ising model with transverse field 2.3. Results

were carried out using Chebyshev polynomials (see Appendix A.2) with same
settings as in Section 2.1. Initial state |ψ〉 was calculated by solving TISE for
Hamiltonian (2.1) at τ = −1. Evolutions realized in total time T are marked
with corresponding colors. As it can be noticed, this quantity gets smaller
exponentially with increasing T , which is verified in the next Figure 2.7. In
Figure 2.7, shows the energy difference at the end of evolution as a function
of T . As one can see, energy difference indeed decreases exponentially when T
grows.

0

1

2

3

−1 −0.5 0 0.5 1

〈H〉 − E0

τ

2

50

10

T

3

5

10

30

Figure 2.6: Energy difference 〈Ĥ〉 − E0 as a function of evolution normalized
time τ . Evolutions with total time T are marked with colors. Selected paths
for corresponding T are marked with dashed lines, ended with labels. (L = 12,
Jij = 1, hij = 0, ∆i = 2, OBC)

10−2

10−1

100

101

0 5 10 15 20 25 30 35 40 45 50

[〈Ĥ〉 − E0](T )

T

Figure 2.7: Solid red line: energy difference 〈Ĥ〉−E0 as a function of evolution
time T . Black dashed line corresponds to fitted exponential function in the
range T ∈ [5, 50]. (L = 12, Jij = 1, hij = 0, ∆i = 2, OBC)
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2.3. Results Chapter 2. Ising model with transverse field

We can use this energy difference solely to test how much evolution is
adiabatic. In the next Section 2.3.3 another, more useful method is proposed.

2.3.3 Comparison to Landau-Zener formula

In this section the results for other quantity will be presented, which can
be used to estimate annealing time T that is sufficient for adiabatic evolution.
Instead of calculating kinks in the system or energy difference from state and
ground state, one can simply calculate projection of state to ground state of
final Hamiltonian. This quantity |〈ψ0|ψ〉|2 contains information about proba-
bility that our state |ψ〉, obtained from Schrödinger equation (TDSE), is the
ground state |ψ0〉 of final Hamiltonian (2.1) at τ = 1. Here, the same numerical
methods and their setting were applied as in Section 2.1. Figure 2.8a shows
projection F0 as a function of T for a system with uniform hi:

F0 = |〈ψ0|ψ〉|2. (2.3)

As one can see even small value of constant field hi, can rapidly increase the
probability of success.

Except for studying the probability, we try to compare our system to the
dynamics of a simple two level system, described by Hamiltonian:

ĤLZ =
1
2
αtσz +

1
2
βσx. (2.4)

Such a system can be studied exactly. The transition probability is given by
the Landau-Zener formula discussed in Appendix B. From Equation (B.15),
probability of a transition is given by: PLZ = exp(−πβ2

2α ), so it is related to β
and the slope α. However, we are interested in the opposite event – the system
should remain in its ground state, so such probability can be expressed by:

P̃LZ = 1− PLZ = 1− exp(−πβ2

2α ). (2.5)

The parameters α and β can be obtained by fitting the energy spectrum.
Gap ∆E for LZF can be expressed by subtracting two eigenvalues from the
Equation (B.2):

∆E =
√

(ατ)2 + β2.

In our case, we use this expression to fit the difference between the two lowest
eigenenergies obtained from numerics. Here the minimum of gap is not always
at τ = 0 and the gap does not have symmetric shape. As a results, another
parameter τ0 must be added to the expression for gap. It is simply the position
of the gap:

∆E =
√

[α(τ − τ0)]2 + β2. (2.6)
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hi = 0.3
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Figure 2.8: Comparison of numerical results with Landau-Zener formula: (a)
numerically obtained projections F0 [Eq. (2.3)] for systems with different uni-
form hi are marked with points, the probability P̃TLZ [Eq. (2.7)] obtained from
LZF with fitted gap shown as a solid line; (b), (c), (d) numerical results (dashed
line) fitted by Eq. (2.6) (gray bold line). Colors in (a) match colors in (b), (c),
(d). (L = 12, Jij = 1, ∆i = 2, OBC)

Since LZF was derived for infinite time range t ∈ [−∞,∞], one should in-
troduce proper scaling of Equation (2.5) to finite time range t ∈ [−T, T ] by
rescaling α→ α

T
:

P̃TLZ = 1− exp(−πβ2

2α T ). (2.7)

In Figures 2.8b-d gaps for our studied system are presented. A fitted formula
(2.6) is marked with a gray bold line. The fitting has to be carried out in a
limited range of energies as close as possible to its minimum because of the
lack of symmetry. In Figure 2.8a solid lines show probabilities of remaining
in a ground state from the Landau-Zener formula with fitted parameters α, β
from a gap. As it can be observed, results from LZF and actual data do not
differ very much. Knowing the gap structure, LZF can give efficient estimation
for proper annealing time T .
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Chapter 3

Graph coloring in Ising model

3.1 Selected topics of graph theory

In this section, basics concepts and definitions from graph theory[34–36] will
be introduced. Despite that graphs are kind of abstract object, they can be very
useful for solving many everyday life problems. In many branches of physics,
graph theory finds application, for example in Quantum Field Theory [37],
Solid State Physics, Quantum Information Theory [38] or even in Astrophysics
[39].

3.1.1 Definitions

First, definition of a graph is required. In this work, only specific cases of
graphs are discussed: undirected graphs. Moreover, only connected graphs will
be considered, i.e. graphs in which there exists a path from each vertex to any
other vertex:

Definition 3.1.1: Undirected graph

Undirected graph G(V,E) is an object containing: set of vertices V and
multi-set of edges E. Multi-set E contains unordered pairs of vertices:
E = {{v, u} : {v, u} ∈ V }. For simplicity elements from E will be
written as (v, u).

Example 3.1.1.

Consider graphG(V,E), where V = {1, 2, 3, 4} and E = {(1, 1), (1, 2), (2, 3),
(2, 3), (1, 3), (3, 4)}. This graph is shown in Figure (3.1).

In Fig. 3.1 vertices are represented by blue circles with labels, and edges
are represented by red lines. As one can see, self-loops and repeated edges are
allowed.
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41 3

2

Figure 3.1: Pictorial representation of the graph from Example (3.1.1).

Definition 3.1.2: Simple graph

Simple graph is an undirected graph without self-loops and repeated
edges. Self loops (v, v) and repeated edges E = {. . . , (v1, v2), (v1, v2), . . . }
are not allowed anymore.

If some edges from the previous Example 3.1.1 are reduced, then one can
achieve graph which will satisfy simple graph conditions.

41 3

2

Figure 3.2: The modified graph from Figure 3.1 to satisfy simple graph condi-
tions.

Definition 3.1.3: Complete graph

Complete graph Kn is an undirected simple graph, in which all pairs of
vertices are connected by edges, where n = |V |.

1 2

34

(a) graph K4

2

4

1

35

(b) graph K5

Figure 3.3: Complete graph examples.

Definition 3.1.4: Planar graph

Planar graph P is an undirected simple graph, which can be drawn in
the plane in such a way that no edges cross each other.
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3.1. Selected topics of graph theory Chapter 3. Graph coloring in Ising model

In Figure 3.4 an example of planar graphs and non-planar graphs is demon-
strated. In Figure 3.3a edge (1,3) can be removed outside the ”box” to show
that K4 is indeed planar. From the graph in Figure 3.3b edges cannot be drawn
in such a way that they do not cross each other – Figure 3.4b. However, this
problem can be solved after extending the definition of the planarity condition.
If one considers drawing not only in the plane, but in any other topological
surface of a given genus1 g, one can easily prove that for g = 1 (i.e. torus) even
K5 is planar.

1 2

34

(a) planar graph K4

2

4

1

35

(b) non-planar graph (K5)

Figure 3.4: Example planar and non-planar graphs.
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Figure 3.5: The number of non-
isomorphic graphs versus the number
of vertices for: simple, planar and 4-or-
less-color 4C = {G : χ(G) ¬ 4} graphs.

Planar graphs are very important
graphs considering the case which
will be introduced in later section. As
it was shown before, for |V | ¬ 4 all
graphs are planar, but when |V |  5
more and more graphs can not be
classified as planar. In Figure 3.5 a
relation between number of vertices
and number of all non-isomorphic
planar and simple graphs is pre-
sented. Non-isomorphism means that
no bijection between two graphs ex-
ists, transforming one into the other.
One can easily obtain data from Fig-
ure 3.5 using open source programs:
geng and plantri.

3.1.2 Graph coloring

Graph coloring is a procedure in which, some labels (it can be color, num-
ber, sign, anything) are assigned to the graph’s vertices or edges. This work is
focused only on coloring of vertices. The task is to color graph in such a way,
that non adjacent vertices will have common color. Often question is to find a
chromatic number χ(G) of a specific graph G:

1Genus is a topological property – a number of holes in the manifold [40].
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Definition 3.1.5: Chromatic number

Chromatic number χ(G) is a minimal number of colors, which are re-
quired to color graph G, in such a way that no two adjacent vertices
share the same color.

1 2

34
(a) Graph K4 has χ = 4.

41 3
2

(b) Graph from Fig. (3.2) has
χ = 3.

Figure 3.6: Example of graph coloring with its chromatic numbers.

One can easily prove that for all complete graphs Kn, the value of χ(Kn) =
n. There are some other rules for specific types of graphs, which can be found
in Ref. [35]. In Figure 3.6 examples of graph coloring are shown. It should
be pointed out that coloring procedure is not unequivocal. Graph in Figure
3.6a can be colored in 4! = 24 different ways with the same set of colors: red,
green, blue and yellow. By all means, using actual real colors will be useful
only for graphs, which have small χ. For graphs with large value of χ it is
better to use numbers to color it up. For any graph G, finding its χ(G) is a very
difficult task. This problem can be assigned to NP-hard problems. Checking
if graph G can be colored with k colors (without minimum criteria) is a NPC
problem. Finally, counting possible solutions of coloring with k colors is located
in #P problem class. #P includes counting problems related to corresponding
decision problems from NP. However, for planar graphs, mathematicians have
proved a very important theorem:

Theorem 3.1.1: Four-color theorem

For any planar graph P , chromatic number χ(P ) ¬ 4. In general case,
this theorem depend on how planarity is defined. For an oriented surface
with given genus g this theorem holds[34]: χ(P ) ¬

⌊
7+
√
1+48g
2

⌋
.

This theorem was introduced without any explanation or proof, because for
now exist only proofs with computer support[35]. Since any map (like in car-
tography) can be brought to a planar graph, main conclusion is that 4 color is
enough for colorizing any map. In practice, cartographers are using more than
4 colors, for example in order to distinguish oceans and other water territories
from countries or to mark coherent territorial country (e.g. Russia and Kalin-
ingrad – Russian exclave). However, converse theorem does not exist, here is
an example of a graph which has χ ¬ 4 and is not planar:
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3.2 Mapping to Ising model

After a brief introduction to the graph theory, coloring problem imple-
mentation in a language of binary variables (or spins) will be discussed. One
can find some other algorithms[41] (NP class), which can be implemented on
the so-called QUBO formula. They can be easily mapped to the Ising model.
This approach is a big perspective for future perfecting AQC, since D-Wave’s
machines are physical realization of such a model.

3.2.1 QUBO formula

Quadratic unconstrained binary optimization (QUBO) is a method [42],
which can be used for solving selected NP class problems. The method is based
on the minimizing the binary quadratic polynomial. The simplest formula can
be examined as the following:

H =
N∑

i=1

ciXi +
N∑

i=1

N∑

j=1

QijXiXj, (3.1)

where Xi is a binary variable Xi ∈ {0, 1}; ci, Qij are real parameters ci, Qij ∈ R
and N is the total number of variables Xi. It is very similar to the Ising model.
The only difference is that in the Ising model variables are not binary, they
are spin variables Szi . Indeed one can find mapping from one to the other very
easily. In this way, many problems can be implemented. The main idea is to
find configuration of Xi variables, such that it will be give the minimum of
H. During this procedure parameters ci and Qij are given as inputs, and as a
result not only the configuration with the minimum of H is carried out, but
the value of min(H) as well.

A B C H
0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 −1
0 1 1 0
1 0 1 −2
0 1 1 1
1 1 1 −1

Table 3.1: All possible configuration for
Figure 3.7.

−1

+1

A −1
C

−1
B

+1

Figure 3.7: QUBO example.

Example 3.2.1.

For a better understanding example from Figure (3.7) is discussed. Values
of ci are represented as blue self-loops with the corresponding numbers and
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the values of Qij are marked in red. If some connection (edge) is missing, it
means that appropriate parameter is equal to 0. With n vertices the system
always has 2n possible configurations. For the case in Fig. 3.7, there are 8
possible configuration. In Table 3.1 all cases with the corresponding H are
written down. The solution, configuration with the smallest value of H, is
marked with red rectangle.

3.2.2 Graph coloring in QUBO formula

To properly define graph coloring problem in QUBO, one should introduce
a binary variable Xic, which is 1 if vertex i ∈ {1, 2, . . . n} is colored with color
c ∈ {1, 2, . . . , k} and 0 if not. The first index enumerates vertices and the
second one colors. One should enforce very important condition: each vertex i
should be colored with one specific color c. This condition can be written in
the following way:

k∑

c=1

Xic = 1. (3.2)

This condition guarantees choosing exactly one color to each vertex. With this
statement one should easily figure out how to embed a graph coloring [41]:

ĤG =
n∑

i=1

(
1−

k∑

c=1

Xic

)2

︸ ︷︷ ︸
HVi

+
∑

〈i,j〉

k∑

c=1

XicXjc

︸ ︷︷ ︸
HEij

. (3.3)

Vertex
Edge

Figure 3.8: Schematic representation
coloring problem of graph G in QUBO
formula.

Here 〈i, j〉 denotes summation over
connected vertices. Term HVi pro-
vides penalty for each time when ver-
tex is colored with more than one
color or with no color at all. The
second term, HEij , generates penalty
when connected vertices have the
same color. The main stated problem
is to find whether k colors allow for
a proper coloring of a given graph G.
When ground state with correspond-
ing eigenenergy E = 0 exists, then
graph G can be colored with k colors.
The procedure ends not only with the
information about possibility of coloring, additionally properly colored graph
is produced. One only needs to check which color of variables Xic for specific
vertex i gets value 1. In this problem the total number of required binary vari-
ables Xic is equal to kn. In a sense, graph G is copied k times, each copy for
one color. Each vertex is represented by k variables, each for one color as in
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Figure 3.8.

Now this problem will be mapped to the Ising model. The only thing which
should one do, is to transform all binary variables Xic into spins Sic. Since
Xic ∈ {0, 1} and Sic ∈ {−12 , 12} one could transform it in the following way:

England
Northern Ireland

Wales

Scotland

Northern
Ireland

England

Wales

Scotland

Figure 3.9: Schematic mapping map coloring problem into graph representa-
tion and next into equivalent the Ising formulation. (United Kingdom contour
source: [43])

Xic = Sic +
1
2
. (3.4)

One can starts from term HVi in Equation (3.3):

HVi =

(
1−

k∑

c=1

Xic

)2
=

(
1−

k∑

c1=1

Xic1

)(
1−

k∑

c2=1

Xic2

)
= 1−

k∑

c1=1

Xic1 −
k∑

c2=1

Xic2 +

k∑

c1=1

Xic1

k∑

c2=1

Xic2 =

=1− 2
k∑

c=1

Xic +

k∑

c1=1

k∑

c2=1

Xic1Xic2 = 1− 2
k∑

c=1

Xic +
∑

c1=c2

Xic1Xic2 +
∑

c1 6=c2

Xic1Xic2 =

=1− 2
k∑

c=1

Xic +

k∑

c=1

X2ic︸︷︷︸
Xic

+
∑

c1 6=c2

Xic1Xic2 = 1−
k∑

c=1

Xic + 2
∑

c1<c2

Xic1Xic2 =

=1−
k∑

c=1

(
Sic +

1
2

)
+ 2

∑

c1<c2

(
Sic1 +

1
2

)(
Sic2 +

1
2

)
= 1−

k∑

c=1

Sic −
k

2
+ 2

∑

c1<c2

(
Sic1 +

1
2

)(
Sic2 +

1
2

)
=

=1−
k∑

c=1

Sic −
k

2
+ 2

∑

c1<c2

Sic1Sic2 +
∑

c1<c2

(Sic1 + Sic2 )

︸ ︷︷ ︸
(k−1)

∑
c
Sic

+
1
2

∑

c1<c2

1

︸ ︷︷ ︸
k(k−1)
2

= 1 +
k(k − 3)
4

+ (k − 2)
k∑

c=1

Sic + 2
∑

c1<c2

Sic1Sic2 .

Now, the second term will be considered:
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∑

〈i,j〉

HEij =
∑

〈i,j〉

k∑

c=1

XicXjc =
∑

〈i,j〉

k∑

c=1

(
Sic +

1
2

)(
Sjc +

1
2

)
=
∑

〈i,j〉

k∑

c=1

SicSjc +
1
2

∑

〈i,j〉

k∑

c=1

(Sic + Sjc) +
1
4

∑

〈i,j〉

k∑

c=1

1 =

=
∑

〈i,j〉

k∑

c=1

SicSjc +
1
2

n∑

i=1

deg(i)

k∑

c=1

Sic +
1
4
k|E|,

where deg(i) is a degree of vertex i, i.e. the number of edges that enter the
vertex, |E| is total number of edges of the problem graph G. Summarizing,
problem from Equation (3.3) can be written in the spin language as following:

ĤG =

n∑

i=1

(
1 +

k(k − 3)
4

+ (k − 2)
k∑

c=1

Sic + 2
∑

c1<c2

Sic1Sic2

)
+
∑

〈i,j〉

k∑

c=1

SicSjc +

n∑

i=1

deg(i)

k∑

c=1

Sic +
1
4
k|E| =

=
(
1 + k4 (k − 3)

)
n+
1
4
k|E|+

n∑

i=1

(
k + 12 deg(i)− 2

)
︸ ︷︷ ︸

h̃i

k∑

c=1

Sic + 2

n∑

i=1

∑

c1<c2

Sic1Sic2 +
∑

〈i,j〉

k∑

c=1

SicSjc.

(3.5)

In Figure 3.9 there is a schematic overview considering mapping: map col-
oring → graph coloring → Ising network. In this example coloring of United
Kingdom’s map is taken into account (assuming that Northern Ireland should
has different color than other 3 Kingdoms). This graph is 3-chromatic2 , pro-
vided that 3 colors are enough to color this graph. In this picture there are
4 colors visible in the Ising representation, nevertheless this is only schematic
plot, showing that each vertex of graph G contains k nodes, in which every
node is connected to all the others. It is worth mentioning that case when
k = 2 is not interesting at all. One can use Ising model for anti-ferromagnet
to solve 2-chromatic graph using only n qubits not nk.

3.3 Results

3.3.1 Studied topologies

All possible non-isomorphic topologies of graphs G(E, V ) with n = |V | up
for n = 3, 4, 5, which are k-chromatic (for k > 2), were studied. As a part of
calculations, annealing was simulated by such protocol:

Ĥ(τ) = −A(τ)
L=nk∑

i=1

∆iσ
x
i +B(τ)ĤG, (3.6)

where ĤG is a Hamiltonian of coloring problem from Equation (3.5), Sic → Szic
and A(τ), B(τ) are functions discussed in Chapter 2. Technical details of the

2k-chromatic means that graph G has chromatic number χ(G) = k.

31

41:8347660647



3.3. Results Chapter 3. Graph coloring in Ising model

evolution was described in Section 2.1. Coloring of a graph is unambiguous and
then many solutions to this problem exist. This has an important consequence:
almost all Hamiltonians from (3.5) for any graphs have huge degeneracy (see
Table 3.2 for an overview of studied topologies). For each case unique ID
is assigned: ID(k, n, t), where k = χ(G), n = |V | and t enumerates various
topologies for graph G(E, V ) for fixed k and n. Unlike in the Chapter 2, simple
projection F0 [Eq. (2.3)] is not sufficient since there is huge degeneracy of the
ground state in the system. The following projection F is proposed to be
measured at the end of annealing, i.e. at time T :

F = 〈ψ(T )|

∑

i∈gs
|i〉〈i|


 |ψ(T )〉 =

∑

i∈gs
|〈ψ(T )|i〉|2. (3.7)

Here gs is a set of all ground states for a specific disorder-free problem encoded
in Hamiltonian (3.5) and |ψ(T )〉 is a state obtained at the end of evolution
(TDSE) for studied system with annealing protocol (3.6). Since one can write
identity operator in following way: 1 =

∑
i∈gs |i〉〈i|+

∑
i 6∈gs |i〉〈i|, this projection

is a very good method for measuring efficiency of reaching the ground state in
the annealing time T . In Figure 3.10 we show projections as a function of T
for all studied topologies. Increasing problem size (L) unnecessarily increase
required time for the annealing. For each case ID is visible at a plot key.

Except calculations for pure systems, system with disorder was also exam-
ined. Such setup should simulate the situation, when actual values of interac-
tion strengths differ from results obtained from maping QUBO on the Ising
problem. The disorder was implemented by modification of specific terms in
the Hamiltonian:

disorder hi : hiS
z
i → (hi + ∆hi)Szi , ∆hi ∈ [−Wh,Wh];

disorder Jij : JijS
z
i S

z
j → (Jij + ∆Jij)Szi S

z
j , ∆Jij ∈ [−WJ ,WJ ];

where here hi, Jij are corresponding values from HVi and HEij respectively,
before adding disorder. ∆hi, ∆Jij are random variables with flat distributions
with amplitudes Wh, WJ . In Figure 3.11 we show 100 realizations as a function
of T for different values of the disorder amplitude Wh. Increasing Wh, increase
spread out of the results. For case with huge value of Wh = 1.0 some of the
realizations are much better then results without any disorder (note: double
log scale), still there are some realizations that are not good at all. In Figures
3.12 and 3.13 there are repeated data from Figure 3.10 with additional lines
corresponding to average results with disorder (hi). All subplots are titled with
graphs ID and one can see graph representation of studied topology on each
subplot. Average disorder realizations make all cases worse, nevertheless there
are indeed some realizations with disorder, when a better result then with-
out noise was obtained. Calculation time grows exponentially with the system
size L. Accordingly, for last cases with ID(4, 4, 1), ID(4, 5, 1), ID(4, 5, 2) and
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ID(4, 5, 3) there are only results without disorder. However, introducing disor-
der to the system causes lack of information about number of solutions. Only
one solution is favorable by the system, due to lifting degeneracy.

ID k n t |E| degeneracy min deg(i) max deg(i) topology
ID(3, 3, 1) 3 3 1 3 6 2 2

ID(3, 4, 1) 3 4 1 4 12 1 3

ID(3, 4, 2) 2 5 6 2 3

ID(3, 5, 1) 3 5 1 5 24 1 4

ID(3, 5, 2) 2 5 24 1 3

ID(3, 5, 3) 3 6 12 1 4

ID(3, 5, 4) 4 7 6 2 4

ID(3, 5, 5) 5 5 24 1 3

ID(3, 5, 6) 6 6 12 2 4

ID(3, 5, 7) 7 6 12 1 3

ID(3, 5, 8) 8 5 30 2 2

ID(3, 5, 9) 9 6 18 2 3

ID(3, 5, 10) 10 7 6 2 4

ID(3, 5, 11) 11 7 12 2 3

ID(3, 5, 12) 12 8 6 3 4

ID(4, 4, 1) 4 4 1 6 24 3 3

ID(4, 5, 1) 4 5 1 7 72 1 4

ID(4, 5, 2) 2 8 48 2 4

ID(4, 5, 3) 3 9 24 3 4

Table 3.2: Information about studied graph topologies. In table ID(G); k =
χ(G); n = |V | number of vertices; t enumerates topologies; |E| is the number of
edges; degeneracy or in other words number of coloring possibilities; min deg(i)
minimum and max deg(i) maximum degree of the G.
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ID(3, 4, 2)
ID(3, 5, 1)
ID(3, 5, 2)
ID(3, 5, 3)
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ID(3, 5, 6)
ID(3, 5, 7)
ID(3, 5, 8)
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ID(3, 5, 12)
ID(4, 4, 1)
ID(4, 5, 1)
ID(4, 5, 2)
ID(4, 5, 3)

Figure 3.10: Projection F [Eq. (3.7)] as a function of annealing time T for all
studied topology cases (without disorder: Wh = WJ = 0, ∆i = 2).

0.5

0.1

1

51 10

F

T

Wh = 1.0
0.5
0.1
0.0

Figure 3.11: 100 realization of projection F [Eq. (3.7)] for the system with
disorder hi as a function of T for case ID(3, 3, 1). Values of the disorder ampli-
tudes Wh are visible in the plot key. Note: double logarithmic scale. (∆i = 2,
WJ = 0)
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0

0.25

0.5

0.75

1 (a) (b) (c)

0

0.25

0.5

0.75

1 (d) (e) (f)

0

0.25

0.5

0.75

1 (g) (h) (i)

0

0.25

0.5

0.75

1

100 101 102

(j)

100 101 102

(k)

100 101 102

(l)

F

ID(3,3,1) ID(3,4,1) ID(3,4,2)

F

ID(3,5,1) ID(3,5,2) ID(3,5,3)

F

ID(3,5,4) ID(3,5,5) ID(3,5,6)

F

T

ID(3,5,7)

T

ID(3,5,8)

T

ID(3,5,9)

Figure 3.12: Projection F [Eq. (3.7)] as a function of T for all studied cases.
Solid line with points corresponds to the results from Fig. 3.10. Dashed line

corresponds to averaged results for the system with Wh = 0.5 and dashed
dotted line corresponds to Wh = 1. Part 1. (∆i = 2, WJ = 0)
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Figure 3.13: Projection F [Eq. (3.7)] as a function of T for all studied cases.
(a)-(g) solid line with points corresponds to the results from Fig. 3.10. (a)-(c)
dashed line corresponds to averaged results for the system with Wh = 0.5
and dashed dotted line corresponds to Wh = 1. Part 2. (∆i = 2, WJ = 0)
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wh

WJ

0.0

0.2

0.4

0.6

0.8

1.0

pi
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Figure 3.14: Influence of the disorder on ground state properties [Hamiltonian
(3.5)]. The plot shows probability pi that ground state of the disordered system
equals to any ground of disorder-free case. Contours show probabilities 0.99,
0.74 and 0.49 respectively. Topology: ID(3,3,1).

3.3.2 Detailed study of selected topologies

In further studies, only selected topologies will be considered. ID(3,3,1) was
chosen, because it has the smallest Hilbert space. Additionally, finite-size ef-
fects can be systematically studied, due to its similarity to topology of ID(3,5,8)
(odd cycle graph).

0.00

0.25

0.50

0.75

1.00

0 1 2 3

pi

WJ

Figure 3.15: Profile at Wh = 0
from Figure 3.14.

In addition to annealing, properties of a
ground states will be investigated. We check
how disorder modifies the ground state, i.e.,
whether the ground state of disordered Ising
model is the same as for model without any
disorder. The system with disorder was gen-
erated, the ground state was found [by solv-
ing TISE for disordered Hamiltonian (3.5)]
and checked if it is the same as any ground
state of the system without any disorder. If
it this particular state was found, then it was
counted as a success. In Figure 3.14 there is
a false-color map showing how Wh and WJ values influence the probability
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of success. Each point in the grid corresponds to 1000 realizations. Success-
ful fraction from all realizations are marked with colors. Contours with equal
probabilities form a circle-like structure in the plane (Wh,WJ). In Figure 3.15
one can see a selected profile from Figure 3.14. The conclusion may be drawn
that disorder in the system, either Wh or WJ , cannot be larger then 1, be-
cause then probability, that the ground state will not give correct answer to
the original QUBO problem (even in adiabatic limit when T → ∞), will be
bigger than 1%.
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0 0.007 0.014 0.021

6
29

µ 0.0117
σ 0.0030

0
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2000
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4000

0.00045 0.0009 0.00135

30
215

µ 0.000915
σ 0.000105

ρF r

F r

ρF r

F r

Figure 3.16: Probability density ρF r(F r) of random quantum state projec-
tion F r. Studied topologies are presented in plot.

One can also study projection F r =
∑
i∈gs |〈ψr|i〉|2 of a random state |ψr〉

on the ground state |i〉 of the disorder-free Ising model, as obtained from the
original QUBO. In Figure 3.16 the result of such studies is presented. First
complex random state from full Hilbert space was generated respectively for
topologies ID(3,3,1) and ID(3,5,8). Next projections of these states on solu-
tions of the graph coloring problems were calculated. This probability of the
correct solution should be related to the degeneracy of the ground state of the
Ising model and dimensions of the Hilbert space. In fact it is. The ratio of
the ground state and Hilbert space dimension is marked by black dashed line
with corresponding value pointed out with an arrow. Gaussian distributions
ρF r(F r) = 1√

2πσ2
exp(−(F r − µ)2/(2σ2)) managed to fit perfectly the obtained

results. In attached tables in the figure mean value µ and standard deviation
σ of collected data is displayed. One should be also aware that for bigger sys-
tem µ and σ are getting approach 0. The random procedure was repeated
105 times. Comparing Figs. 3.14 and 3.16 one finds that large overlaps of the
ground states for disordered and disorder-free Hamiltonians (see Fig. 3.14) do
not arise as accidental events.
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Figure 3.17: (a)-(c) probability density ρF (F ) for projection F [Eq. (3.7)] for method M1 [Eq. (3.8)] and M2 [Eq. (3.9)]. With
vertical lines are marked: (solid) projection value for system without disorder and (dotted) corresponding mean values for
disorder cases. In (d) classical inner product (S|h) [Eq. (3.10)] as a function of projection F is presented. Plots (a), (c) and
(d) are regarding to same topology presented in (a). Data in (b) are related to topology presented in plot. (∆i = 2, WJ = 0)
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For now on various implementations of disorder will be considered. Since
in actual machines one cannot choose arbitrarily parameters for the ’Hamil-
tonian’, some limitations on parameters values should be imposed. Disorder
in field hi not in Jij will be set only. Note that topologies ID(3,3,1) and
ID(3,5,8) are almost the same. The system without disorder should always
have h̃i = k + 1

2 deg(i)− 2 = 2, because all vertices are degree of 2 and k = 3.
Two different methods were examined:

• method M1:

h̃i =
{

2 + ∆h̃i, for ∆h̃i < 0.25;
2.25, for ∆h̃i  0.25;

(3.8)

• method M2:

h̃i =
{

2 + ∆h̃i, for ∆h̃i < 0;
2, for ∆h̃i  0, ∆h̃i ∈ [−W̃h, W̃h].

(3.9)

∆h̃i is random variable with flat distribution with amplitude W̃h = 1. In Figure
3.17 the comparison of these two disorder methods M1 and M2 to system
without disorder is presented. In Figure 3.17a-c a probability density ρF (F )
of projections F [see Eq. (3.7)] for both methods is shown. Figures 3.17a and
3.17b are for T = 10. Mean values for both methods are marked with dotted
lines. As one can see, method M2 is better, i.e. more results are on the right
hand side of non-disorder case, then in M1. The distribution M2 also has smaller
variance and its mean value is greater then projection value for system without
any disorder (solid line). Method M2 can be used for potentially improving the
performance of the QA. In Figure 3.17c results for longer times T = 30 are
plotted. The highest peak for method M2 is to the left from peak of method
M1 for this case, but peak value of method M2 is higher then M1. It is related
to distributions ’tails’, which can be seen in the inset. However this results for
longer times is not very interesting since, relatively short times of annealing
with high projection are required. It is interesting to note, that introducing
disorder may improve the performance of QA, in that it increases probability
of finding the ground state of the original QUBO, which contains no disorder.
In order to explain this result we have calculated correlations between h̃i and
spin configuration S of the ground state of the Ising model. Classical inner
product between vector of spin configuration of the ground state S = [Si] and
vector of field h̃ = [h̃i] has been used (where i = 1, . . . , L):

(S|h) = min
n∈gs

cov(S(n), h̃)
σS(n)σh̃

= min
n∈gs

∑

i

(S(n)i − 〈S〉)(h̃i − 〈h̃〉)
√∑

j

(S(n)j − 〈S〉)2
√∑

j

(h̃j − 〈h̃〉)2
, (3.10)
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where n enumerates all ground states of the Ising model as derived from QUBO.
〈x〉 stands for the expectation value: 〈x〉 = 1

N

∑N
i=1 xi. Minimum of these cor-

relation was taken, because large and positive hi promotes negative Szi so the
covariance (3.10) is negative. As one can see in Figure 3.17d, obtained data
are strongly correlated. Data with the highest value of projection are the most
anti-correlated. One may make a conclusion that disorder in field h̃ can affect
the projection F , if values of h̃i are set in such way that they promote spin
configuration, which represents the solution of QUBO.

−2

−1

0

1

0.6 0.8 1

(a)

0.6 0.8 1

(b)

〈H〉

τ τ

Figure 3.18: Energy spectrum fragment in selection time range τ of evolution
process for (a) system without disorder, (b) system with disorder M2 [Eq.
(3.9)]. (Topology: ID(3,3,1), ∆i = 2)

Again one can try to use LZF for describing studied phenomenon. In Fig-
ure 3.18 we show the energy spectrum during the evolution [Eq. (3.6)] for two
different cases. In Figure 3.18a there is the result for the system without dis-
order and in Figure 3.18b selected realization with disorder M2 [Eq. (3.9)]. In
the first case (Fig. 3.18a) ground state is 6 times degenerated at time τ = 1.
Due to the minimum value of the gap β = 0, application LZF for this case
may not work properly. However, for the second case (Fig. 3.18b) there is no
degeneracy of the ground state at τ = 1. In case from Fig. 3.18b, LZF should
work reasonably if the gap is properly large. One may propose some other
energy gap for approximation by LZF (e.g. difference between ground state
energy and the first non-degenerated state energy at τ = 1 for disorder-free
case). However, energy levels spectrum during the evolution is very compli-
cated and it is very hard to find other quantity which can be calculated then
gap between two the lowest energy states. In Figure 3.19 the relation between
fitted parameters β, α, τ0 for LZF (same Hamiltonian as was used in Section
2.3.3), calculated negated transition probability P̃TLZ [Eq. (2.7)] and projection
F [Eq. (3.7)] for 104 disorder (M2) realizations is demonstrated. As one can
see in Figure 3.19d, for some systems settings, for which obtained projection is
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Figure 3.19: Fitted parameters for LZF [same Hamiltonian (2.4) as was used
in Section 2.3.3, P̃TLZ [Eq. (2.7)], F [Eq. (3.7)] for 104 realizations of disorder
M2 [Eq. (3.9), topology: ID(3,3,1)]. Black dot corresponds to disorder-free case.
(∆i = 2, W̃h = 1, WJ = 0, T = 10)

large (about F  0.75), the evolution process can be well approximated with
LZF. Result for disorder-free case is marked with black dot.

42

52:7240379967



Conclusions

In summary, the thesis provides the reader theoretical background and
(hopefully future) applications for adiabatic quantum computers. The results
are promising with future research opportunities.

The main purpose of the thesis is to discuss adiabatic quantum computa-
tions using Hamiltonians which are relevant for the D-Wave quantum anneal-
ers. We have considered the most general form of the spin Hamiltonian, which
cannot be mapped on a system of noninteracting particles. The latter assump-
tion poses a challenge since one needs to study the non-equilibrium dynamics
of generic interacting quantum systems. However, in order to test and bench-
mark our approach, we have shown that our results accurately reproduce the
data for the simplified case when one may avoid the complexity of many–body
interactions. The original studies within the thesis are focused on disordered
systems. In this way, we have simulated the situation which is most probably
relevant for the D-Wave annealers. Namely, the D-Wave annealers may still be
imperfectly tuned on the hardware level. As a consequence, parameters of the
Hamiltonian which defines the quantum dynamics may differ from the values
which are set within the program being run on the D-Wave annealer. For a
selected realizations of the quenched disorder, the adiabatic dynamics turns
out to be more robust than for original disorder-free model. Therefore, partic-
ularly tuned weak disorder may even improve the performance of the D-Wave
annealers. It is the main novel result reported in the present thesis.

In the future, one needs to carry out more general consideration and com-
pare the theoretical predictions with results obtained directly from real adia-
batic quantum computer. Further work is necessary for our better knowledge
on quantum nature and for the improvement of our technology.
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Appendix A

Numerical methods

In this appendix numerical methods will be described which were used to
obtain results in this thesis. The most three important methods are briefly
described:

• Lanczos method for finding eigenvalues/eigenvectors for large sparse ma-
trices;

• Chebyshev propagation a numerical method for solving differential equa-
tions, especially Schrödinger equation;

• Adjacency matrix – data structure storage format for graph topology.

A.1 Lanczos method

Lanczos method [44–47] is a method, based on the power method [47, 48],
for finding the lowest eigenvalues. Main idea behind this method is to transform
symmetric (or hermitian) matrix [Hij] (rankH = n) into tridiagonal form [Tij]
(rankT = k). Algorithm starts from random vector |f0〉 and next, by iterative
steps, subsequent states {|fi〉}k−1i=0 are generated:

|fm+1〉 = H|fm〉 − am|fm〉 − bm−1|fm−1〉,
where here1 am, bm−1 can be calculated by the following relations:

am =
〈fm|H|fm〉
〈fm|fm〉

;

bm−1 =
〈fm|fm〉
〈fm−1|fm−1〉

.

1Naturally b−1 = 0.
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Appendix A. Numerical methods A.2. Chebyshev propagation

This construction guarantees that set of {|fi〉} is orthogonal. Using this result,
one can transforms H into T using normalized vector |fm〉:

|φm〉 =
|fm〉√
〈fm|fm〉

;

[Tmm] = 〈φm|H|φm〉 = am;

[Tm−1,m] = 〈φm−1|H|φm〉 =
√
bm−1.

The matrix [Tij] takes the following tridiagonal form:

[Tij] =




a0
√
b0 0√

b0 a1
√
b1√

b1
. . . . . .
. . . ak−1

√
bk−1

0
√
bk−1 ak



.

After k iterations and filling elements of the matrix [Tij] one can diagonalize it
to obtain approximate k eigenvalues of matrix H. The most important advan-
tages of this approach is the fact that eigenvalues from the energy spectrum
edges are obtained in only a few steps of iterations (∼ 102). There is no need2

to transform all n states, very small fraction (k � n) of n is enough to obtain
convergence of the ground state. Since, the largest and the smallest eigenvalues
are most interesting, this algorithm is very useful.

A.2 Chebyshev propagation

Chebyshev propagation is a method for solving differential equations based
on Chebyshev polynomials properties. Chebyshev polynomial can be constructed
by the following recurrence definition [49]:

Tk(x) = 2xTk−1(x)− Tk−2(x), (A.1)

and with initial conditions: T0(x) = 1, T1(x) = x, where x ∈ [−1, 1]. Since
Chebyshev polynomials create set of orthogonal basis [49] one can expand
any smooth continuous function f(x) on interval x ∈ [−1, 1] by the following
expression:

f(x) =
∞∑

k=0

ckTk(x) = α0 + 2
∞∑

k=1

αkTk(x), (A.2)

where here ck = 〈f(x)|Tk(x)〉
〈Tk(x)|Tk(x)〉

, with inner-product 〈f |g〉 defined as:

2To many iteration may cause the ghost state effect – errors.
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A.2. Chebyshev propagation Appendix A. Numerical methods

〈f |g〉 =
1
π

1∫

−1

dx
1√

1− x2f(x)g(x).

General solution to Schrödinger Equation (1.4) can be written as follows:

|ψ(t)〉 = U(0, t)|ψ(0)〉,

where here U(0, t) is time propagator operator. One can calculate U operator
by the formula:

U(0, t) = T̂τ exp


−i

t∫

0

dτ Ĥ(τ)/~


 ,

where T̂τ is chronological operator. Operator U(0, t) can be expanded in a
product sequence:

U(0, t) = lim
δt→0

U(t− δt) · · ·U(δt, 2δt)U(0, δt).

Assuming that Hamiltonian Ĥ is constant within very small time window
[tn, tn + δt], solution to Schrödinger equation can be found by iterative steps
on finite set of times: {tn : tn = nδt}Nn=0:

|ψ(tn)〉 = e−iĤ(tn)δt/~|ψ(tn−1)〉. (A.3)

The next step is to expand operator e−iĤ(tn)δt/~ in a Chebyshev polynomial
basis. One can easily find that coefficients αk of function f(x) = e−ixt in
Chebyshev polynomial basis are given by:

αk(t) = (−i)kJk(t), (A.4)

where Jk(t) are Bessels function of the first kind. Using iterative property
(A.1), series expansion (A.2) and formula for evolution (A.3) one can easily
evolve system of given Hamiltonian Ĥ with following iterative method [50, 51]:

|ν0〉 = |ψ(tn−1)〉;
|ν1〉 = H̃|ψ(tn−1)〉;
|νk〉 = 2H̃|νk−1〉 − |νk−2〉;

|ψ(tn)〉 = e−ibδt/~
(
α0(aδt/~)|ν0〉+ 2

∞∑

k=1

αk(aδt/~)|νk〉
)

;

where H̃ = 1
a
(Ĥ − b1) and a, b are scaling parameters. Since Chebyshev poly-

nomials are well defined on range x ∈ [−1, 1], then we should rescale our
Hamiltonian spectrum to fit that boundaries.
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Appendix A. Numerical methods A.3. Adjacency matrix

A.3 Adjacency matrix

It is very useful to represent graph G in adjacency matrix Aij representation
[36]. This matrix contains 0 or 1 values. If vertices i and j are connected then
Aij = 1 otherwise Aij = 0. Below example from Figure 3.2 is considered with
written down corresponding adjacency matrix [Aij] and vector of all degree of
vertices [deg(i)]:

41 3

2

[Aij] =

1 2 3 4






1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

, [deg(i)] =







1 2
2 2
3 3
4 1

.

Figure A.1: Example graph with corresponding adjacency matrix representa-
tion and vector containing degree of each vertex.

This matrix representation is very useful if one want to calculate, e.g., the
degree deg(i) of each vertex. To achieve this, one should simply sum all entries
in a specific row/column which correspond to selected vertex i. On the other
hand if information about vector of degree of all vertices is available then
one can easily calculate the total number of edges using famous handshaking
lemma:

Lemma 1: Handshaking lemma

For any finite undirected graph G with vertex set V and edges E:
∑

i∈V
deg(i) = 2|E|.

Proof of this lemma is quite obvious: when degrees of all vertices are added,
one counts every edge twice, so one should divide the sum by 2 to obtain total
number of edges |E| in graph G.

Interesting interpretation has n-th power of adjacency matrix An [35]. Value
of element [(An)ij] is a number of paths of length n from i to j. Such construc-
tion allows to (for simple structures like trees) determine next nearest neighbors
〈〈i, j〉〉 for nearest neighbors 〈i, j〉 after some operations.
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Appendix B

Landau-Zener transition

This appendix contains simple derivation and some comments of Landau-
Zener transition. All calculations and informations are based on papers: [52–
55].

B.1 Landau-Zener derivation

Landau-Zener transition is a simple model of transition of 2-level system
{| ↑〉, | ↓〉}. The system can be described with the following time-dependent
Hamiltonian:

Ĥ(t) =
1
2

(αtσz + βσx) =
1
2

(
αt β
β −αt

)
. (B.1)

One can easily find eigenvalues of such Hamiltonian:

Ĥψ = Eψ;

(Ĥ − E1)ψ = 0;

det(Ĥ − E1) = 0;

det
[

1
2

(
αt− E β
β −αt− E

)]
= 0;

1
4

(
−(αt− E)(αt+ E)− β2

)
= 0;

1
4

(
α2t2 + β2

)
= E2.

Finally our system has eigenenergies:

E = ±1
2

√
(αt)2 + β2. (B.2)
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Appendix B. Landau-Zener transition B.1. Landau-Zener derivation
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t
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±α2 t

Figure B.1: Example Landau-Zener Hamiltonian energy spectrum in time t
function (parameters: α = 0.3; β = 1).

Let’s write state |ψ(t)〉 in same basis like in Hamiltonian (B.1):

|ψ(t)〉 = c1(t)| ↑〉+ c2(t)| ↓〉. (B.3)

Now by putting this state to Schrödinger equation:

i|ψ̇(t)〉 = Ĥ|ψ(t)〉;

i

(
ċ1(t)
ċ2(t)

)
=

1
2

(
αt β
β −αt

)(
c1(t)
c2(t)

)
=

1
2

(
αtc1 + c2β
βc1 − αtc2

)
. (B.4)

From Equation (B.4) one can get the following set of equations:



ċ1 = − i

2 (αtc1 + βc2) ;

ċ2 = − i
2 (βc1 − αtc2) .

(B.5)

Next, the second derivative of equation for ċ1 from Eq. (B.5) is calculated:

c̈1 = − i
2

(αc1 + αtċ1 + βċ2) .

After that, using the second equation from set of equations (B.5):

c̈1 = − i
2
αc1 −

i

2
αtċ1 −

β

4
(βc1 − αtc2) .

Term c2 from the equation can be replaced from the first equation from set of
equations (B.5):

c̈1 =− i

2
αc1 −

i

2
αtċ1 −

β2

4
c1 +

αt

2

(
iċ1 −

1
2
αtc1

)
=

=− i

2
αc1

�
�

�
��

− i
2
αtċ1 −

β2

4
c1
�

�
�

��
+
i

2
αtċ1 −

α2t2

4
c1.
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One can end with second order differential equation for only c̈1, c1:

c̈1 +
(
iα
2 + β2

4 +
(
αt
2

)2)
c1 = 0. (B.6)

Using substitution c1 = |c1| exp[−iϕ(t)] in Equation (B.6), where ϕ(t) is some
real function:

|c1|e−iϕ(t)(−iϕ̇(t))2 + |c1|e−iϕ(t)(−iϕ̈(t)) +
(
iα
2 + β2

4 +
(
αt
2

)2) |c1|e−iϕ(t) = 0;

−ϕ̇(t)2 − iϕ̈(t) + iα
2 + β2

4 +
(
αt
2

)2
= 0.

Now, separation into real and imaginary part (because all parameters are real)
is done:




ϕ̈(t) = α

2 ;

ϕ̇(t) = ±12
√

(αt)2 + β2.
(B.7)

The second equation from set of equations (B.7) one can transform into the
following form:

ϕ̇ = ±12
√

(αt)2 + β2 = ±12α|t|
√

1 + β2

α2t2
.

This expression can be further simplified with condition t→ ±∞:

(ϕ̇)t→±∞ = 1
2αt

√
1 + β2

α2t2
. (B.8)

Since Taylor expansion of
√

1 + x ≈ 1 + 1
2x, then it can be approximated with

the following:

(ϕ̇)t→±∞ ≈ 12αt+ 1
4
β2

αt
. (B.9)

With this result one can calculate the following:

(
ċ1
c1

)

t→±∞
=
(
|c1|e−iϕ(−iϕ̇)
|c1|e−iϕ

)

t→±∞
= −iϕ̇t→±∞. (B.10)

Since ċ1
c1

is well-behaved on real domain then it can be expanded to complex
plane and by using Cauchy integral theorem[56]:

+∞∫

−∞

dt
ċ1(t)
c1(t)

= −
∫

C

dz
ċ1(z)
c1(z)

, (B.11)

where C is integral contour, which is visualized on Figure B.2. The left hand
side of equation (B.11) can be easily obtained:

+∞∫

−∞

dt
ċ1
c1

=
+∞∫

−∞

dt
dc1
dt

1
c1

=
+∞∫

−∞

dc1
c1

= ln
c1(+∞)
c1(−∞)

. (B.12)
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<(z)

=(z) C

Figure B.2: Integration contour C.

This contour C can be parametrized with z = Reiθ, where R → ∞ and
θ ∈ [0, π]. Using Equations (B.9),(B.10) one can calculate the right hand side
of equation (B.11):

−
∫

C

dz ċ1(z)
c1(z)

=−
∫

C

dz
(
ċ1(z)
c1(z)

)
|z|→∞

= i
∫

C

dz
(
1
2αz + 1

4
β2

αz

)
=

=i lim
R→∞

π∫

0

dθ
(
i
2R
2e2iθ + i

4
β2

α

)
= −πβ2

4α

∣∣∣∣∣∣

π

0

= −πβ2

4α . (B.13)

Now simply by connecting the left hand side [Equation (B.12)] with the right
hand side [Equation (B.13)]:

ln c1(+∞)
c1(−∞) = −πβ2

4α ;

c1(+∞) = c1(−∞) exp(−πβ2

4α ). (B.14)

The probability of Landau-Zener transition PLZ is given by the formula:

PLZ = |c1(+∞)|2 = |c1(−∞)|2︸ ︷︷ ︸
1

exp(−πβ2

2α ) = exp(−πβ2

2α ). (B.15)

B.2 Numerical results

To verify this analytical solution [Equation (B.15)], similar Hamiltonian
was studied like in Equation (B.1) using numerical methods which was de-
scribed in Appendix A:

Ĥ =
1
2

(
α
T
t β
β −α

T
t

)
. (B.16)

Since numerically one cannot obtain evolution from t = −∞ to t = +∞,
evolution was proceed in finite time range t ∈ [−T, T ]. As initial condition to
Schrödinger equation ground state of the matrix at t = −T was put. This little
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Figure B.3: Comparison numerical results to analytical Landau-Zener formula
from Equation (B.15) (parameters: α = 1, β, T are visible in plot.)

modification in Hamiltonian (B.16) guarantees that for any T evolution always
starts from the same state. In Figure B.3 a comparison between numerical
and analytical solution (which is only correct in T → ∞) is presented. In
this figure one can see projection F = |〈ψ0|ψ〉|2 (solid line) as a function of
total evolution time T , where |ψ0〉 is a ground state for Hamiltonian (B.16)
at t = T and |ψ〉 is a state, which is obtained from Schrödinger equation
(TDSE). Negated probability solution from Equation (B.15) is plotted with
dashed lines with proper scaling of α parameter: P̃TLZ = 1 − exp(−πβ2

2α T ). As
one can see Landau-Zener formula giving (almost) same result to numerical
exact evolution even for T <∞.
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Appendix C

Experiments on DW-2000Q

In this appendix, the preliminary results realized on real physical quantum
annealer are presented. However, all information here is in the first phase of
the study. The authors are very grateful for D-Wave Systems for providing
access to their machines.

Annealing on DW-2000Q

In this section topology ID(3,3,1) will be studied again, although on real
adiabatic quantum computer. In general, process of embedding to chimera
topology can be very difficult. In Figure C.1 embedding process of graph col-
oring problem is introduced. Graph, which has 3 vertices (Fig. C.1a), is rep-
resented by 9 qubits in Ising model (Fig. C.1b), and it can be realized on
chimera topology using 20 qubits (Fig. C.1c). D-Wave System provides a soft-
ware, which carries out this embedding using heuristic method.

Studying disorder influence on the effectiveness of QA using D-Wave’s com-
puter can be problematic. At each programing cycle user defines parameters

1 3

2

(a) G(E, V ) (b) Ising mapping (c) Chimera embedding

Figure C.1: Representation of: (a) studied 3-colorable graph G(E, V ) case
ID(3,3,1); (b) same problem mapped into Ising model and (c) an example
embedding on chimera topology.
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Figure C.2: Averaged fraction of correct answers p obtained on DW-2000Q
machine (with points) as a function of annealing time and corresponding fit
(with lines). Different cases are marked with colors: blue – standard parameter
setting; red/green – the best/worst configuration, which is found with theoreti-
cal calculations for disordered systems. [Hamiltonian (3.5), topology ID(3,3,1),
energy scale factor 0.2, 102 runs with 104 realizations]

hi and Jij and since hardware has limited precision, actual values of these pa-
rameters are slightly deviated from input values. Nevertheless we managed to
study selected configurations, which were obtained for system with disorder
Jij and hi, on actual D-Wave annealer DW-2000Q. The best and the worst
configuration from previous studies for topology ID(3,3,1) were chosen for the
verification. To do better measurement of annealing time dependence, the hole
energy range of the parameters was scaled by factor 0.2. Probability of correct
answer p after annealing was measured, i.e. in one run of 10 000 realizations
ratio between correct and all results was calculated. 100 of such runs with
10 000 realizations were performed and then the final result was calculated
by averaging all samples for proper annealing time. As one can see in Figure
C.2, on real quantum machine the results are quite promising. We observed
performance improvement for the best case from theoretical calculations and
performance failure for the worst case. This investigation, in some way, can be
considered as an experimental authentication.
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